If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9r^2-4r-4=0
a = 9; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·9·(-4)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{10}}{2*9}=\frac{4-4\sqrt{10}}{18} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{10}}{2*9}=\frac{4+4\sqrt{10}}{18} $
| x^-2+3x^-1-10=0 | | 3/8c=9 | | 5x-1/2x=8 | | x-0.63=1.16 | | -2+5x=4x+2 | | 50=7r-6 | | 8k(k=3)=2k-15 | | 2(16-2b)+4b=32 | | x+6/16=1/6+x-3/4 | | 54-2x=7x-18 | | x+9/14=8/7+x-4/4 | | 3/4=x-5/4-2x | | 11=3-7k+5k | | 6a+11=23 | | -8v-8=8(-7v-1) | | -3.1q+1.2=-3.3-1.6q | | √x=2x-5 | | 3y-8=2y+14 | | 1.5(3-6x)=-3(8x-4) | | -5s^2+7s+1=0 | | x3+4x2−20x=80 | | -2=-4p+3+5p | | -12(5x+4)=-(6x-6) | | 81c=25+7c | | (x)+(2x)+(x-7)=107 | | 29=-y/9 | | (4/9)x-12=-1/6(x-12)-3 | | 4y^2-6=58 | | x+1=2x5+4(x-2) | | 4p^2+8p-9=0 | | 14-(3a+2)=0 | | 3x=10x-40 |